Secret Knowledge: We are all and everything is vibrational and interacts/manifests via frequency. An extraordinary film by Producer, David Sereda and James Law. For more information and access to other essential films please proceed to website: http://www.voiceentertainment.net/
Secret Knowledge: We are all and everything is vibrational and interacts/manifests via frequency. An extraordinary film by Producer, David Sereda and James Law. If this film resonates with you, for more information and access to other essential films please proceed to website: http://www.voiceentertainment.net/
Relativity versus quantum mechanics: the battle for the universe
Physicists have spent decades trying to reconcile two very different theories. But is a winner about to emerge – and transform our understanding of everything from time to gravity?
It is the biggest of problems, it is the smallest of problems. At present physicists have two separate rulebooks explaining how nature works. There is general relativity, which beautifully accounts for gravity and all of the things it dominates: orbiting planets, colliding galaxies, the dynamics of the expanding universe as a whole. That’s big. Then there is quantum mechanics, which handles the other three forces – electromagnetism and the two nuclear forces. Quantum theory is extremely adept at describing what happens when a uranium atom decays, or when individual particles of light hit a solar cell. That’s small.
Now for the problem: relativity and quantum mechanics are fundamentally different theories that have different formulations. It is not just a matter of scientific terminology; it is a clash of genuinely incompatible descriptions of reality.
The conflict between the two halves of physics has been brewing for more than a century – sparked by a pair of 1905 papers by Einstein, one outlining relativity and the other introducing the quantum – but recently it has entered an intriguing, unpredictable new phase. Two notable physicists have staked out extreme positions in their camps, conducting experiments that could finally settle which approach is paramount.
Basically you can think of the division between the relativity and quantum systems as “smooth” versus “chunky”. In general relativity, events are continuous and deterministic, meaning that every cause matches up to a specific, local effect. In quantum mechanics, events produced by the interaction of subatomic particles happen in jumps (yes, quantum leaps), with probabilistic rather than definite outcomes. Quantum rules allow connections forbidden by classical physics. This was demonstrated in a much-discussed recent experiment in which Dutch researchers defied the local effect. They showed that two particles – in this case, electrons – could influence each other instantly, even though they were a mile apart. When you try to interpret smooth relativistic laws in a chunky quantum style, or vice versa, things go dreadfully wrong.
Relativity gives nonsensical answers when you try to scale it down to quantum size, eventually descending to infinite values in its description of gravity. Likewise, quantum mechanics runs into serious trouble when you blow it up to cosmic dimensions. Quantum fields carry a certain amount of energy, even in seemingly empty space, and the amount of energy gets bigger as the fields get bigger. According to Einstein, energy and mass are equivalent (that’s the message of E=mc2), so piling up energy is exactly like piling up mass. Go big enough, and the amount of energy in the quantum fields becomes so great that it creates a black hole that causes the universe to fold in on itself. Oops.
Craig Hogan, a theoretical astrophysicist at the University of Chicago and the director of the Center for Particle Astrophysics at Fermilab, is reinterpreting the quantum side with a novel theory in which the quantum units of space itself might be large enough to be studied directly. Meanwhile, Lee Smolin, a founding member of the Perimeter Institute for Theoretical Physics in Waterloo, Canada, is seeking to push physics forward by returning to Einstein’s philosophical roots and extending them in an exciting direction.
To understand what is at stake, look back at the precedents. When Einstein unveiled general relativity, he not only superseded Isaac Newton’s theory of gravity; he also unleashed a new way of looking at physics that led to the modern conception of the Big Bang and black holes, not to mention atomic bombs and the time adjustments essential to your phone’s GPS. Likewise, quantum mechanics did much more than reformulate James Clerk Maxwell’s textbook equations of electricity, magnetism and light. It provided the conceptual tools for the Large Hadron Collider, solar cells, all of modern microelectronics.
What emerges from the dust-up could be nothing less than a third revolution in modern physics, with staggering implications. It could tell us where the laws of nature came from, and whether the cosmos is built on uncertainty or whether it is fundamentally deterministic, with every event linked definitively to a cause.
Read More Here
No comments:
Post a Comment
Hello and thank you for visiting my blog. Please share your thoughts and leave a comment :)
No comments:
Post a Comment
Hello and thank you for visiting my blog. Please share your thoughts and leave a comment :)